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More than 80% of Al projects
oget stuck in the lab or
produce partial success.

Productizing ML is one of the biggest challenges in Al practices today.
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Why Al Projects Fail* . o0

. Tools
. Governance
. Productization

Production is the main barrier
towards delivering business value

Difficulty deploying jnto business processes/applications

Managemen resistancelinternal politics

aA7%

Lack of DewOps or managerial skills

Unable to adequatelvEecure or goverrjdata and analytics inputs/outputs

Poor planning/unreasonable expectations|

N
N
R

Lack of funding/rigM tools

“Productizing ML is one of the
biggest challenges in Al
practices today. Many Al
projects, more than 80%
according to research, get
stuck in the lab, produce
partial success, or consume
far more resources and time
than initially planned.”

Unable to adequately address (or mitigatej data quality }nd intgrity issues

Open-source pilot technologies are n-nlpn:-ductinn-grm:lu

Unable to demonstrate busines: ROI|

Selectecjtooling Pidn't scale to product requirements

~
R

Other

' Source: Gartner
—_—
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Lack of DewOps or manageria

Why Al Projects Fail*

Production is the main barrier
towards delivering business value

Difficulty deploying pnto business processes/applications

skills

Open-source pilot technologies are mlpmductinn-gradu

' Source: Gartner
—_—

. Governance
. Productization

AT7%
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“Only a small fraction of real-world ML systems

is composed of the ML code” Google, inc.

Configuration

Data Collection

Machine
Resource
Management

Feature
Extraction

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

* Sculley, David, et al. "Hidden technical debt in machine learning systems.” Advances in neural information processing systems 28 (2015).

01/26/2024
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Evolutionary Changes in Data Analysis (ECiDA)

MOSTAFA ALEXANDER VIKTORIYA
HADADIAN LAZOVIK DEGELER

X
rijksuniversiteit
groningen X

UNIVERSITEIT VAN AMSTERDAM

RESEARCHABLE
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Mission

* Simplify engineering tasks
to let scientists concentrate on coding.

* A Lifecycle Management System specifically designed
to support Real-time Data Processing,
with enhanced Modularity,
using Microservices.

01/26/2024
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Service-Oriented Computing Machine Learning Development
Mature Evolving
Clear Scope Probabilistic
Predefined Logic More lterative
Development for production Evolving Scope

Data-Driven Update

O
. <(\Q
Development for Exploration

Mk

smmse——""" Adaptive"
Runtime
Controller

Infrastructure

* Hadadian Nejad Yousefi, Mostafa, et. al. "Empowering Machine Learning Development with Service-Oriented Computing Principles.” Symposium and Summer
School on Service-Oriented Computing. Cham: Springer Nature Switzerland, 2023.

01/26/2024 Mostafa Hadadian
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Coarse-Grained Al/ML Lifecycle

Data Al/ML Application
Preparation Development Deployment
g w I,

Beneﬂcuary AI/ML AI/ML

Business

Requirement Monitoring

Benefucnary Al/ML

01/26/2024 Mostafa Hadadian
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Data Processing Pipeline

Individual Component

P P Pre-

Processing

P p Post-

Processing

01/26/2024

Pipeline

Parameters Componen
Pre-

Processing

Pre-
Processing Topology

)

/
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Modularity By Design

<I>

Algorithmic Modularity

 Utilization of programming languages or frameworks for
the development of machine learning applications

a Architectural Modularity

* Packaging each stage into distinct module and deploying
these modules into appropriate software environments

01/26/2024 Mostafa Hadadian
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Monolith VS Microservice
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Easy to develop
Easy to deploy

Better Modularity and Visibility
Scalability

P Less prone to network errors Technology Diversity
Fros .
Continuous Updates
Lack of isolation Operational Overhead
Reusability Hard to debug
CO”S Hard to minor updates and patches. Hard to share code

* https://www.infog.com/news/2020/04/microservices-back-again/

Mostafa Hadadian

13



https://www.infoq.com/news/2020/04/microservices-back-again/
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CI/CD in Monolith vs Microservice

Team A
\ Team A - »| Release ——» Production
Team B %‘ | Team B %» Release %b Production
caRr? dei?i?ce . Production
Team C / X >< Team C - »| Release ——» Production
/ Team D | Release —— Production
Team D

Monolith

* https://docs.microsoft.com/en-us/azure/architecture/microservices/ci-cd

Mostafa Hadadian

Microservices
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Classical Software Evolution

KPI * Incremental improvement

 Definite input/output
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Al System = Code + Data

Code = Algorithm/Model

T

Hyperparameters
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Al System Evolution

KPI KPI (Production)
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Monitoring Distributed ML Systems

« ML workflow monitoring:

* Model monitoring
e Performance Metrics (Accuracy, Precision, Recall)
* Concept Drift: Change in the relationship of inputs and targets over time

« Data Monitoring
e Qutlier Detection

e Data Drift: Statistical Distribution Changes

« Resource usage monitoring
* CPU, memory, and disk 1/O

01/26/2024 Mostafa Hadadian 18
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Which one do you pick?

=
o

W Prophet m XGBoost " Light-GBM m Stacking (Light-GBM) m Stacking (XGBoost)

{ |
1 1
bl e Bl HEE DM

2017/09/10 2017/09/11 2017/09/12 2017/09/13 2017/09/14 2017/09/15 2017/09/16
(Prophet) Stacking Stacking  Light-GBM  XGBoost Light-GBM  Stacking
(Light-GBM) (Light-GBM) (XGBoost)

Mean Absolute Error (GW)
S P N W B~ U1 OO N 0 W
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Selection Results

01/26/2024

RMSE
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Mostafa Hadadian
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The ECiDA Platform

Automatic Module Composition Monitoring Database
GPT 3

Prometheus

0

Recommendations

Push Pipelines )“_ __Pull Resources _ > Argo CD
Pipeline ®
(_J User Interface Deployment Repository Monitoring

Sync Deployment Repository Modules
\ Cl: Create and Push Modules

User Module Code

i I

Modules Codebase Docker Registry Adaptive Runtime Controller Data Pipelines

Kubernetes
01/26/2024

Mostafa Hadadian
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User Interface

= ECIDA Project Name Edit Project consumer-v2
Add modules ~ Canvas VAL O 3 P 51 A
Filter () Match all 1t} standardScaler ° It} Trainer ° suggeSt
Scaler Monitor env:management Clear Summary Inputs Outputs o
Out
S p Input Outl -—" Input 1 n income I
Q, Search for definitions . L. It} standardMonitor .
PredictionData e PredictionData e E harmonic_mean I
Implementations (0 selected) Multi-select Input ] suggest
Description
GeneralScaler n new_me|
Get a pipeline sugge: A pol:l)Ilsh—subslcrlbe pipeline that with an
MinMaxScaler ~ Popover title 11} producer-v2 . It} consumer-v2 . ] outputs. additional monitor
P Use the adaptive module selector
to find a fitting Scaler Input outl Inputhessage  Component Data Consumer
Predictionl .
Adaptive Scaler ® Duplicate L4 Module: consumer-v2
. . X Get a pipeline suggestion by giving a description of the
Adaptive Monitor </> Show YAML Standard implementation of a subscriber desired result.
in the publisher-subscriber pattern.
@ Group as Pipeline Provides simple printing of any data sent # Suggest
I Remove Module
Clear Selection Add Pipeline Main

01/26/2024
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Summary

* Code alone doesn't make an Al project.
* Engineering aspects of data science are overlooked
* Al is being used to streamline its own development and deployment.

* There are many specifics for that need careful considerations
* Pipeline Composition

Life Cycle Management

Training vs Inference

Versioning

Continuous Monitoring

Experiment Tracking

What-if Scenarios

01/26/2024 Mostafa Hadadian 23




With Al comes great
maintaining efforts

use it wisely
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MARCH, 2024
RANCE
PO PORTE DE VERSAILLES

OUDNATIVECON
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